

67

6

Private
Workspace

A government clerk’s room,

showing a desk with books,

telephone and directory, and

a desk lamp on it. Washing-

ton, D.C., 1939.

Photo by David Meyers. Library of Congress,
Prints & Photographs Division, FSA-OWI Collection,

Reproduction Number: LC-USF33-015598-M2.

SBbook.book Page 67 Sunday, September 29, 2002 10:02 PM

68

INTRODUCTION

In

Active Development Line (5),

 you and other developers make frequent

changes to the code base, both to the modules you are working on and to

modules you depend on. You want to be sure you are working with the latest

code, but because people don’t deal well with uncontrolled change, you want

to be in control when you start working with other developers’ changes. This

pattern describes how you can reconcile the tension between always develop-

ing with a current code base and the reality that people cannot work effec-

tively when their environment is in constant flux.

Y

How do you do keep current with a continuously changing codeline and also
make progress without being distracted by your environment changing out
from under you?

 Developers need a place where they can work on their code, isolated from

outside changes, while they are finishing a task.

When a team develops software, people work in parallel, with the hope

that the team gets work done more quickly than any individual. Each indi-

vidual makes changes in parallel with the other team members. You now

have the problem of managing and integrating these parallel streams of

change. Writing and debugging code, on the other hand, is a fairly linear

activity. Because in team development, concurrent changes are happening to

the codeline while you are working on your specific changes, there is a ten-

sion between keeping up to date with the current state of the codeline and

the human tendency to work best in an environment of minimal change.

Changes that distract you from your primary purpose interrupt your flow.

SBbook.book Page 68 Sunday, September 29, 2002 10:02 PM

Introduction

69

DeMarco and Lister define “flow” as “a condition of deep, nearly meditative

involvement”(DeMarco and Lister 1987). In

Peopleware

, the authors discuss

flow as noise and task-related interruptions, but integrating a change that is

not related to the task at hand can have a similar effect.

Developing software in a team environment involves the following steps:

• Writing and testing your code changes

• Integrating your code with the work that other people were doing

There are two extreme approaches to managing parallel change: literal

continuous integration and delayed integration.

You can integrate every change team members make as soon as they make

it. This is the clearest way to know whether your changes work with the current

state of the codeline. The downside of this “continuous integration” into your

workspace approach is that you may spend much of your time integrating,

handling changes tangential to your task. Frequent integration helps you iso-

late when a flaw appeared. Integrating too many changes at once can make it

harder to isolate where the flaw is because it can be in one of the many changes

that have happened since you integrated. Figure 6–1 shows this concept.

F

IGURE

 6–1. Combining changes at once

Workspace

Change 1 Change 2 Change 3

SBbook.book Page 69 Sunday, September 29, 2002 10:02 PM

70

Chapter 6 /

Private Workspace

Even when you do “continuous integration,” as when you are doing

Extreme Programming, you really integrate in discrete steps, as when a day’s

work is complete. Figure 6–2 shows this case.

You can integrate at the last possible moment. This makes it simplest for

you, the developer, while you are working, but it means that you may have

many outside integration issues to deal with, meaning that it will take longer

to integrate at the end.

You can “help” developers keep up to date by having them work from a

shared source/release area, keeping only local copies of the components

they are modifying. Figure 6–3 illustrates this. But you don’t want things

to change unexpectedly. Also, a change in one of the other components

can affect your work. If you are coding in a language such as C++, a

change in a header can cause a compilation problem. A change in the

source can cause a behavior problem. Even with a highly modular archi-

tecture, components interact, making it hard to get consistent results

across a change.

Sometimes you are working on things other than the latest code base. You

must interrupt your work on the current release to work on the code at an

F

IGURE

 6–2. Integrating each change as it happens

Workspace

Change 1 Change 2 Change 3

SBbook.book Page 70 Sunday, September 29, 2002 10:02 PM

Introduction

71

F

IGURE

 6–3. Sharing some components between workspaces

 A S I M P L E P L A N

To some, this sounds like an easy-to-solve problem with an obvious solu-
tion. When I was interviewing for a job at a start-up company six years
into my career, I discovered that some obvious solutions are easy to miss if
you are not thinking about the context. The company had fully bought into
the idea of nightly builds. The problem was that each developer worked
from a shared product area, so after a night of working on a problem, you
could come in the next day to find that your development environment had
changed dramatically and then have to spend half the day simply getting
to where you were the night before.

This illustrates one problem with blindly following a “good idea” without
thinking through the reasons for using it.

Workspace 1 Workspace 2Workspace 1 Workspace 2

SBbook.book Page 71 Sunday, September 29, 2002 10:02 PM

72

Chapter 6 /

Private Workspace

earlier point in time. Or you may need to experiment with a new feature.

Sometimes you can’t be up to date and still do your work.

You can also avoid the problems of continuous updates by taking a snap-

shot of the entire system and performing all your coding tasks against the

snapshot. This overly conservative approach can cause problems when you

get behind the leading edge of changes. You may find yourself introducing

problems into the global environment.

You need a way to control the rate of change in the code you are develop-

ing without falling too far out of step with the evolving codeline.

ISOLATE YOUR WORK TO CONTROL CHANGE

Y

Do your work in a

private workspace,

where you control the versions of code
and components you are working on. You will have total control over when
and how your environment changes.

Every team member should be able to set up a workspace where there is a

consistent version of the software. A concise definition of a workspace is “a

copy of all the ‘right’ versions of all the ‘right’ files in the ‘right’ directories”

(White 2000). A workspace is also a place “where an item evolves through

many temporary and inconsistent states until is checked into the library”

(Whitgift 1991). You should have total control of when parts of the system

change. You control when changes are integrated into your workspace. The

most common situation is when you are working on the tip of the codeline

along with other team members, but when you are working on a version that

is not the latest, you can re-create any configuration necessary.

A

private workspace

 comprises the following.

• Source code you are editing.

• Any locally built components.

• Third-party derived objects that you cannot or do not wish to build.

• Built objects for all the code in the system. You can build these yourself,

have references to a shared repository (with the correct version), or have

copies of built objects.

SBbook.book Page 72 Sunday, September 29, 2002 10:02 PM

Isolate Your Work to Control Change

73

• Configuration and data that you need to run and test the system.

• Build scripts to build the system in your workspace.

• Information identifying the versions of all the components in the system.

A

private workspace

 should not contain the following.

• Private versions of systemwide scripts that enforce policy. These should be

in a shared binary directory so that all users get the latest functionality.

• Components that are in version control but that you copied from some-

where else. You should be able to reproduce the state of your workspace

consistently when you are performing a task, by referencing a version

identifier for every component in the workspace.

• Any tools (compilers, and so on) that must be the same across all versions

of the product. If different versions of the product require different ver-

sions of tools, the build scripts can address this by selecting the appropri-

ate tool versions for a configuration.

In addition, a

private workspace

 can include tools that facilitate your work,

as long as the tools are compatible with the work style of the team.

To do your coding for mainline development, follow a procedure similar

to this.

1. Get up to date. Update the source tree from the codeline you are working

on so that you are working with the current code and build, or repopulate

the workspace from the latest system build. If you are working on a differ-

ent branch or label, create a new

private workspace

 from that branch.

2. Make your changes. Edit the components you need to change.

3. Do a

Private System Build (8)

 to update any derived objects.

4. Test your change with a

Unit Test (14)

.

5. Update the workspace to the latest versions of all other components by

getting the latest versions of all components you have not changed.

6. Rebuild. Run a

Smoke Test (13)

 to make sure that you have not broken

anything.

SBbook.book Page 73 Sunday, September 29, 2002 10:02 PM

74

Chapter 6 /

Private Workspace

If your system is small enough, you can simply get the source and any

binary objects for the correct configuration of all the product components and

build the entire system. You might also consider getting the latest code from

the

Mainline (4)

 and building the entire system if it does not take too long.

This will ensure that the system you are running matches the source code

.

With a good incremental build environment, doing this should work rather

well, allowing for, perhaps, the one-time cost of the whole system build.

In more complex systems or where you are especially intolerant of prob-

lems, populate the environment by getting the source and object files from a

known good build (

Named Stable Bases (20)

). You can also get all the source

files from the

Mainline (4)

 because this will probably simplify debugging.

Get whatever external components you need from the

Third Party Codeline

(10)

. All these components should be of the correct configuration (version,

label, and so on) for the system you are working on. Get private versions of

all the source components you will be changing.

If you are working on multiple tasks, you can have multiple workspaces,

each with its own configuration. For example, you can have a release 1.1

workspace to fix problems in the old release while doing new development in

a release 2 workspace. These can be separate and complete workspaces. It is

not worth the effort, in most cases, to save space by factoring out common

components. (For example, if component X has not changed between release

1.1 and release 2, it is worthwhile simply to have two copies of this compo-

nent. If X changes in release 2 later on, it will be easy to update the release 2

workspace without affecting the release 1 workspace.

Be sure that any tests, scripts, tools, and so on use the correct execution

paths so that they run with the correct workspace version and not with a

component from another workspace or an installed version of the product.

One way to do this is to deploy all local components in one binary directory

and put the current directory in the path. Another way is to start tests in a

script that sets the environment.

Some component environments, such as COM, define certain items

machinewide, so be sure to have a mechanism to switch between workspaces

by unregistering and registering the appropriate servers.

To be sure that you have built all dependencies, do a

Private System Build

(8).

Check that your changes integrate successfully with the work others have

SBbook.book Page 74 Sunday, September 29, 2002 10:02 PM

Isolate Your Work to Control Change

75

done in the meantime by getting the latest code from the

Mainline (4)

(exclusive of changes you have made). If you are working on multiple tasks at

one time, your workspace should have many workspaces.

One risk with a

Private Workspace (6)

 is that developers will work with old

“known” code too long, and they will be working with outdated code. You can

protect yourself from this by doing a periodic

Private System Build (8)

and

making sure that changes do not break the build or fail the

Smoke Test (13)

.

(The sidebar Update Your Workspace to Keep Current discusses the

workspace

update

 in more detail.)

The easiest way to avoid becoming out of date is to do fine-grained tasks,

checking in your changes after each one and updating your workspace before

starting a new task. Some people find it useful to establish a discipline of creat-

ing a brand-new workspace periodically to avoid problems that stray files

might cause and preventing the “works for me” syndrome. This is not ideal but

is an adaptation to the reality that some version control tools do an imperfect

job of updating, particularly when you move files within the system.

Having a

Private Workspace (6)

 does take more space than working with

shared source, but the simplicity it adds to your work is worth it.

An automated build process should also have its own workspace. Setting up

this workspace would always get all the updates, if you are doing a “latest” build.

Good tool support makes managing a combination of shared and private

components easy, but you can get quite far by using basic version control

tools and scripts. For example, if your system can be built quickly but uses

some third-party components, your checkout process can populate your

workspace from version control with all the source from your system and the

built objects for the third-party components. After you build your product

code, you will have a complete system.

A

Smoke Test (13)

 allows you to check that your changes don’t break the

functionality of the system in a major way. A well-designed smoke test will

help you minimize the amount of code you need to keep in your workspace

and rebuild, because the Smoke Tests should test the features that clients of

your module expect.

Some work touches large parts of the code base and takes a long time to

finish. In these cases, a

Task Branch (19)

 may be the more appropriate

approach.

SBbook.book Page 75 Sunday, September 29, 2002 10:02 PM

76

Chapter 6 /

Private Workspace

Depending on your specific goal, there are a number of variations to this

pattern, including a developer workspace, an integration workspace, and a

task workspace, in which case a developer has a number of workspaces in the

area concurrently.

Variations of a workspace are used for specific purposes—for example, an

integration workspace, which is where changes are combined with the cur-

rent state of the system, built, and tested. This can also be called a build

workspace and may exist on the integration or build machine.

U P D A T E YO U R WO R K S P A C E T O K E E P C U R R E N T

After a workspace has been populated, the codeline may continue to
evolve. If the work in your workspace is isolated for too long, the ver-
sions in the workspace can become outdated. A

workspace update

operation will “refresh” the outdated versions in your workspace,
replacing them with the versions from the latest stable state of the code-
line. If any of the files you changed are also among the set of “newer”
files from the codeline, merge conflicts may occur and will need to be
reconciled.

You should do a workspace update before you merge your changes back
to the codeline during a

Task Level Commit (11)

. You will need to rebuild
using a

Private System Build (8)

, or at least recompile immediately after
the update, to find and fix quickly any inconsistencies introduced by the
new changes. If desired, immediately before updating your workspace,
checkpoint it using a label or

Private Versions (16)

 to ensure that you can
roll back to its previous state.

 You may also update your workspace at known stable points, as well as
right before you are about to check out a new set of files, to ensure that
your workspace remains stable without growing “stale.” This enables you
to find out early on if any recently committed changes conflict with any
changes in your workspace. You may then reconcile those changes in your

Private Workspace (6)

at incremental intervals, instead of waiting until the
end to do all of them at once.

SBbook.book Page 76 Sunday, September 29, 2002 10:02 PM

Further Reading

77

UNRESOLVED ISSUES

Once you have stability for yourself, you still need to prevent introducing

errors into the system when you check in your changes.

Private System Build

(8)

 lets you check that your system does not break the build and also enables

you to do an incremental build for the parts of your system when you do an

incremental update from version control for other components.

You need to populate your workspace from a

Repository (7)

 containing all

the source and related components. Externally provided components need to

come from a

Third Party Codeline (10)

.

Once you are done with your local work, it must be incorporated into the

rest of the system in an

Integration Build (9)

.

FURTHER READING

• Brian White in

Software Configuration Management Strategies and Ratio-

nal ClearCase: A Practical Introduction

(White 2000) has a good descrip-

tion of the various types of workspaces that ClearCase supports

(ClearCase calls them “views”). He says that “one of the essential functions

of an SCM tool is to establish and manage the developers’ working envi-

ronment, often referred to as a ‘workspace’ or a ‘sandbox.’”

• Private workspaces are a common practice in successful development

organizations, so common that they are often not described as such. Man-

aging change, consistent build practices, and other essential components

of private workspaces are all part of the practices that classic books such as

Code Complete

 (McConnell 1993) and

Rapid Development

 (McConnell

1996), among others, describe.

SBbook.book Page 77 Sunday, September 29, 2002 10:02 PM

SBbook.book Page 78 Sunday, September 29, 2002 10:02 PM

