
������������������������������������			

������
��������

������������������������������

������������

��������

����		����

������������������		��������

��������

Crossroads News � 2004 CM Crossroads Page 1 of 8

To subscribe to Crossroads News visit - news.cmcrossroads.com

Agile SCM – Patterns and Software Configuration Management
Steve Berczuk, Brad Appleton and Steve Konieczka – April 2004

Abstract

Patterns and pattern languages are tools that you can use to help your
team be more effective and more agile. Patterns can lead to robust,

effective solutions because the solutions that patterns lead you to take the
environment into account, and solve problems in a way that makes the
system work better. This article will show you how you can use existing

patterns to improve your SCM process. It will also help you to understand
where existing patterns and pattern languages have gaps.

Introduction
Since this issue of CM Crossroads focuses on Software Configuration Management (SCM) Patterns and
two of the contributors of the Agile SCM column are the authors of a book on an SCM Pattern language, it
seemed appropriate to focus this month’s article more on SCM Patterns than on Agile SCM. The themes or
agility and patterns are closely related; the appropriate use of Patterns and Pattern Languages can help you
to be more agile. This month we will provide a quick overview of what Patterns and SCM Patterns are with
enough information to get you oriented. We’ll also provide a list of resources to find to learn more about
patterns and pattern languages.

If you already know what SCM Patterns are about, this article will provide you with some ideas about how to
get your organization to adopt them. If you are new to SCM Patterns (or patterns of any sort), this article will
get you started. This column may start off a bit more theoretical than many of our other columns; if that is
not what you prefer, hang on for a bit. There will be practical advice. When we wrote SCM Patterns we
wanted to encourage people to understand what they were trying to accomplish first, and apply practices
and tools later.

Introducing Patterns and Adding Value
For “Patterns” to be useful, you need to think of them as more than just a magic phrase, or silver bullet that
everyone will understand and appreciate. By using patterns and pattern languages you can add value to
your organization by improving the development process as a whole, rather than simply fixing immediate
problems. Patterns also provide for a common vocabulary for SCM concepts, which will facilitate
communication in your organization.

To use “patterns” in your organization, your audience need not be versed in what patterns are, or in the
specific patterns that you wish to use for you to leverage their power. In some organizations the people in a
team will be aware of what patterns are, and they may be familiar with a certain class of patterns. This is not
the case in most organizations. As with any attempt on process improvement how, much value you get from
patterns depends on how you introduce the concepts as much as the values of the concepts alone. Often
the various aspects of software development such as “coding,” “configuration management,” “testing” — to
name just a few — are treated as separate steps which concern different people. This leads a sense of
competition rather than cooperation. A pattern approach will help you and your team to understand how
SCM practices fit within the development process, thus encouraging everyone to move towards a common
goal: higher quality software delivered more effectively.

To benefit from SCM patterns you need to introduce them into your organization in a way that will have an
impact. Walking into in a room and speaking of "Patterns" will not get you very far unless the people in the
group understand what patterns are and have some clue about the particular patterns that you are
discussing. They may hear the word “pattern” and have some reaction to it (positive or negative) and leave
without understanding the real goal: working more effectively, much like the dog in the favorite Gary Larsen
Far Side which has a dog hearing “Ginger blah blah blah Ginger” rather than the complete message. This

������������������������������������			

������
��������

������������������������������

������������

��������

����		����

������������������		��������

��������

Crossroads News � 2004 CM Crossroads Page 2 of 8

To subscribe to Crossroads News visit - news.cmcrossroads.com

can be frustrating, especially if you understand how to implement an effective SCM process, and if you
have thought a bit about how patterns work with SCM.

You are more likely trying to influence people who are so focused on their immediate tasks that may not
have even heard of Patterns, much less, SCM Patterns. So if we’re going to talk about how patterns help
you to be more effective and more agile, we may want to consider thinking of how you can use patterns
effectively without spending too much time on introducing the concept of patterns. After all, in the end
people usually want a better software development process, not an education in patterns or other concepts.
(Though through the education, they may be able to better understand how to fix their own process)

If you understand the patterns they can provide a framework for helping to explain the value in ways that
your audience can grasp. For example, many readers of CM Crossroads know the value of Private
Workspaces (for example) and how they fit into the development process, so I hope that the Private
Workspace pattern in the book can provide an outline for you to argue why a team should use private
workspaces (or anything similar) Patterns, be they from Software Configuration Management Patterns, or
from other sources. Patterns are most effective in the hands of a "champion" who can interpret the patterns
and translate the concepts into a mechanism that works for the existing culture. While there is benefit to
adopting the pattern vocabulary, it is more important to have your organization adopt the principles from the
patterns.

The “What” of Patterns and SCM
Patterns differ from other forms of describing best practices in that patterns make the relationship between
practices explicit. Patterns build upon each other, and when they form a coherent unit, they form a Pattern
Language, which is a guide to building something. Often you are faced with a problem for which a best
practice sounds like a solution. You are then faced with questions like:

� How do I put this practice in place?

� What are the organizational and process prerequisites for this practice to work?

� What are the implementation considerations specific to my organizations tools and SCM
environment?

A pattern contains the following basic parts:

� A name,1 which describes what the pattern helps you build. The name also forms the basic for a
common vocabulary. You can talk about a Task Branch in an unambiguous way if you all agree that
Task Branch is what the pattern Task Branch describes.2 Tools often have their own vocabulary
and you may need to translate between the terminology that your organization and tool3 uses.

� A Context, which describes when it makes sense to build the thing that the pattern describes.
Rather than say “Build a task branch” we need to know if the environment is one where a Task
Branch will be helpful and useful. In the SCM Pattern language, the Task Branch makes sense in
the context of an Active Development Line. In a perfect world, we could express the context in

1 Names are often noun phrases to emphasize that patterns are things. Some have objected to the idea of
expressing SCM Process Concepts as “things” rather than “tasks.” Either way works, but there are some
benefits to the consistent thing model.
2 Ideally, the name is based on some common usage, so rather than “creating” a vocabulary, the name
helps to establish meaning within a common vocabulary.
3 We are working with some vendors to come up with a mapping between the tool vocabulary and the SCM
Patterns where the tool supports the concept, but under another name.

������������������������������������			

������
��������

������������������������������

������������

��������

����		����

������������������		��������

��������

Crossroads News � 2004 CM Crossroads Page 3 of 8

To subscribe to Crossroads News visit - news.cmcrossroads.com

terms of other patterns. In some cases no one has written the pattern and we settle for a prose
description of your situation.

� A description of the problem, both a summary and a detailed description explaining the tradeoffs
that you need to consider when solving this problem.

� A solution, that shows how to use the patterns described to solve your problem, and how the
pattern solves your problem. Typically you will see a short solution and as well as a longer
description with implementation details.

Keep in mind throughout this discussion that a prerequisite for a pattern is that it describes a proven good
practice (within the context). The form does not make it a pattern.

A pattern collection or pattern language is a guide to helping you to build a certain kind of thing. Various
pattern languages may share some elements, but a pattern language for an Agile SCM environment will be
different than one for a more controlled environment, and trying to steer an organization in an inappropriate
direction will cause problems. The Pattern Language in the book Software Configuration Management
Patterns is about building a software CM environment where your want to respond rapidly (agilely) to
change. Fortunately, this is a common requirement at the heart of many processes, and the SCM Pattern
language addresses how to separate the parts of your codebase that need to change rapidly, from those
that need to be stable.

Who Can Introduce Patterns
Process Improvement is often thought of as being the stuff of “initiatives” and “working groups” but most
organizations should be trying to improve in small ways every day. Understanding what patterns should be
in an environment is part of that process.

When I started out as a software developer I worked with a team of people who taught me that how we do
things and why we do things as developers is as important as what we do. In other words: process isn’t only
the concern of senior developers. Everyone should care about finding ways to work better. Of course, the
more influence you have over the team, the more you should care, since you’ll have a bigger impact on the
bottom line, but there are things that everyone can do to make their own work better and perhaps lead by
influence.4

Perhaps only a few should thing globally. Everyone should act locally. For example, any developer should
be able to add tests for their code, independent of the team’s global policy.

Goals and Intentions of the SCM Pattern Language
Perhaps the common definition of “SCM Patterns” is the patterns in the book Software Configuration
Management Patterns, along with, perhaps, the patterns in Streamed Lines.5 A pattern language guides
you along the process of building a thing, the SCM Pattern language in Software Configuration
Management Patterns is not a guide to building every SCM process. The patterns in Software Configuration
Management Patterns work best in an agile environment. I could argue that most teams should be more
agile than they are now, and could be so without sacrificing anything. Many restrictive (or non-agile)
processes seem to have their origins in lack of trust, or an unreasonable fear of risk, rather than reasonable
business goals.

4 The book Becoming A Technical Leader is an great resource for learning how to do this. See the
Resources section of this article for publication information.
5 See http://www.cmcrossroads.com/bradapp/acme/branching/

������������������������������������			

������
��������

������������������������������

������������

��������

����		����

������������������		��������

��������

Crossroads News � 2004 CM Crossroads Page 4 of 8

To subscribe to Crossroads News visit - news.cmcrossroads.com

You are the one who best understands what your team is doing now and how it needs to improve.

The Role of Tools
The first question I get about SCM is often “What tool should I use?” Like all things, tools influence the way
that you work. If you have a tool that makes something easy you may do something one way. Without that
tool another approach may be almost as good. My advice, which is not often well received, is to understand
what your work process is, what you want it to be, what your constraints are, and then pick a tool that
supports them. Then you can think about whether you should use different tools.

The pattern language in Software Configuration Management Patterns does not care about tools beyond
having some sort of version control system and some sort of build process tool. Of course, some tools
make implementing some patterns more transparent than other tools do.

Applying the SCM Pattern Language for Process Improvement
A frequent complaint is that teams spend too much time stabilizing their codeline before releases, resulting
in developers idling while the team integrate (and thus delays that cascade into subsequent releases). One
approach to resolving this situation is creating a release branch and dividing the team’s effort into
stabilization and new release activity. This does not always work as expected if the release branch takes a
long time to reach “release quality.” Time spent waiting for the release to be ready is replaced by time spent
on merging release line fixes into the main line. The SCM Pattern Language provides a map to making
resolving some of these issues.6

A patterns approach would analyze how the problems relate and provide solutions that build upon each
other. If your team has frequent releases you would attempt to focus most of your work on a single Active
Development Line, which would have a Codeline Policy that allows for frequent check-ins, but only after
they run a suite of Smoke Tests and Unit Tests in their Private Workspaces. Developers will also be
expected to do Private System Builds to provide added assurance that their check-in will not break the
build. Later on an Integration Build will build everything, and perform extensive Regression Tests. By the
time you are ready to start a Release Line, the code should be fairly stable, and you should not need to
perform complicated merges between codelines.

While having a Release Line (applying a single pattern) relieved some pain, applying the Release Line
pattern in context gave you a greater benefit.

The Missing Patterns
The SCM Pattern Language as it appears in the book Software Configuration Management Patterns, and
the other patterns that are in the Streamed Lines Pattern Language and other places do not solve every
problem the development team faces. Often, the most important patterns to document and disseminate are
the ones that the "expert practitioners" use regularly and talk about, but never take the time to formally
write-up in a book or paper that will be readily accessible to users who need it most. Here are some areas
for which additional patterns would be useful. Some of these come from the list of patterns that Brad and
Steve didn’t include in the book for a variety of reasons. Many come from questions that we’ve been asked,
either on the SCM Patterns discussion list, or in private.

We invite you to think about practices that seem to work well in your environment, practices that seem to
solve problems in a good way and that balance many difficult tradeoffs. Maybe you know the basis for
another pattern that hasn’t been documented yet.

6 We’re using the SCM Pattern Language as an example; there are other pattern languages out there.

������������������������������������			

������
��������

������������������������������

������������

��������

����		����

������������������		��������

��������

Crossroads News � 2004 CM Crossroads Page 5 of 8

To subscribe to Crossroads News visit - news.cmcrossroads.com

� Build Management - e.g., for using or structuring make/ANT files and their corresponding
"rules" (maintaining build dependencies, building all or part of a system, supporting multi-platform or
component-based building, parallelizing builds or using a "build-ring", standard sets of Make/ANT
targets (e.g., clean, install, update, test, docs, etc.)

� "Physical" software design patterns (a.k.a. code architecture) - for example, best
practices for how to store and organize assets under configuration management across one or
more repositories, and across directory-tree structures within a repository in order to assist not just
software design/architecture, or to minimize build-dependencies or build-times, or assist traceability
and/or configuration auditing

� Change Control - setting up, chartering, and running and facilitating a CCB (see patterns from
Ellen Gottesdiener's book Requirements by Collaboration7), deciding policies for obtaining stake-
holder buy-in (see Agile SCM column for Aug 2003 CMCrossroads)

� Configuration Audit/Review – conducting or automating audits and reviews of builds and
baselines

� Configuration Status Accounting/Reporting – tracking and managing the status of requests,
changes, and baselines the face of multiple releases and/or variants, change propagation and
coordination with multiple codelines and/or sites and/or vendors/suppliers, devising and
implementing promotion lifecycle models

� Distributed and/or Multi-Site SCM, including integration coordination/synchronization "topologies"
for distributed parallel development

� Multi-Component and/or Product-Family SCM - effective strategies for working with multiple
versions of multiple components being integrated into a system, and/or for families of components
with subsets of components and component versions being combined and configured to
build/package/release multiple products in a product-line

� SCM Solution selection/deployment/architecture – plotting the particulars of how SCM will
operate within your organization, defining an overall process framework and “governance”,
evaluating SCM tools and technology, administering and deploying/upgrading tools and processes
across a network of servers and repositories and workspaces, coordinating and synchronizing
upgrades of repositories and workspaces

� Database CM – CM of databases, stored procedures, database schemas and views, queries and
reports; configuration and use of database workspaces and production “sandboxes” and database
“code integration.” The Agile SCM Column in the January 2004 issue of CM Crossroads is a
starting point for some of these issues.

� Web SCM – configuration and content management of websites and web software, including all
artifacts (code, HTML/XML files, XML schemas and ontologies, JavaBeans and EJBs, managing
JAR/WAR/EAR files)

� Service-Oriented SCM – SCM for service-oriented architecture, and service-oriented architecture
of SCM itself (e.g., CM Services model of Dart&Wallnau and mentioned by Louis Taborda in his
SCM futures/predictions article earlier this year)

� Enterprise CM – managing change across the enterprise, CM of enterprise architecture, CM with
and for business processes, workflow, B2B and EAI

7E. Gottesdiener, Requirements by Collaboration : Workshops for Defining Needs. Boston: Addison-
Wesley, 2002.

������������������������������������			

������
��������

������������������������������

������������

��������

����		����

������������������		��������

��������

Crossroads News � 2004 CM Crossroads Page 6 of 8

To subscribe to Crossroads News visit - news.cmcrossroads.com

The Pattern "Language" Angle
As previously mentioned, patterns describe individual solutions to a recurring problem in a context. A
pattern language is more like a seasoned "trail guide" thru a set (or family) of related patterns that build
upon one another. They help "connect the dots" to realize a more complete overall SCM domain solution.
Documenting more proven SCM patterns is important, but so is being able to successfully select from and
navigate through a growing body of SCM patterns. In addition to inviting you to document and disseminate
more SCM patterns, we also heartily encourage you to help others see how patterns work together.
Possible topics include:

� Connecting and inter-relating patterns- taking some existing "named" best-practices and showing
how they work together to create a larger solution (where to start, where to go next, what factors to
consider in choosing the next stop on the destination). One possible example would be to take the
patterns in the Software Configuration Management Patterns, and in AntiPatterns and Patterns in
Software Configuration Management 8 and relating them all together to "connect the dots" between
them.

� Sharing experiences with power of pattern names to convey an SCM concept in a tool-independent
way, and/or with a "suite" of patterns to create a "shared language" in one's own "shop" for
discussing and disseminating SCM problems/solutions and process

� Relating patterns or pattern-languages across domains - for example, taking a set of SCM patterns
and relating them to a set of Software Testing Patterns, or a set of Project Management Patterns,
or a set of Requirements Management/Analysis Patterns, or Software Architecture Patterns.

� Rationale for using patterns and pattern format (and pattern languages) as an effective means of
naming and sharing knowledge of SCM best-practices (as opposed to the approach currently taken
by BOKs such as PMBOK and SWEBOK)

Resources to Learn More
While you don’t need to understand patterns to get value from a book on patterns, you can get more value
from working with patterns if you understand what they are about.

To learn more about patterns and pattern languages:

� The Hillside Group, a nonprofit corporation dedicated to improving human communication about
computers by encouraging people to codify common programming and design practice, has a page
of resources about patterns: http://www.hillside.net/patterns. The page has links to many resources
about patterns, as well to links to existing software patterns and pattern languages.

� Brad wrote an Introduction to Patterns available from:
 http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html which has pointers to many
excellent books about patterns, both in software and in the world of building architecture, where the
idea of patterns originated.

To learn more about SCM Patterns:

8 W. J. Brown, H. W. McCormick, and S. W. Thomas, AntiPatterns and Patterns in Software Configuration
Management. New York: Wiley, 1999.

������������������������������������			

������
��������

������������������������������

������������

��������

����		����

������������������		��������

��������

Crossroads News � 2004 CM Crossroads Page 7 of 8

To subscribe to Crossroads News visit - news.cmcrossroads.com

� Steve and Brad’s book: Software Configuration Management Patterns: Effective Teamwork,
Practical Integration9 is a published pattern language about SCM patterns that focus on teams that
want to use SCM practices effectively.

� http://www.scmpatterns.com has links to resources for those interested in learning more about SCM
Patterns, including a reference card for the patterns: http://www.scmpatterns.com/book/refcard.html

For help with introducing patterns:

� Fear Less: Introducing New Ideas into Organizations by Mary Lynn Manns and Linda Rising, from
Addison-Wesley, October 2004. There is a draft of some of the material on the web.

� Becoming A Technical Leader. (New York, NY: Dorset House, 1986) by Gerry Weinberg is an
excellent book that discusses how “leadership” happens at many levels in an organization.

Conclusion
There are many teams that have problems with basic SCM issues, where SCM isn’t facilitating
communication and teamwork, but doing more the opposite. The problem isn’t a lack of tools; there are
many good tools, both free and commercial. The problem is that people don’t understand how SCM
practices fit into their environment. Pattern thinking is one way to help people understand how everything is
related.

9 S. P. Berczuk and B. Appleton, Software Configuration Management Patterns : Effective Teamwork,
Practical Integration. Boston, MA: Addison-Wesley, 2003.

������������������������������������			

������
��������

������������������������������

������������

��������

����		����

������������������		��������

��������

Crossroads News � 2004 CM Crossroads Page 8 of 8

To subscribe to Crossroads News visit - news.cmcrossroads.com

Brad Appleton is co-author of Software Configuration Management
Patterns: Effective Teamwork, Practical Integration. He has been a software
developer since 1987 and has extensive experience using, developing,
and supporting SCM environments for teams of all shapes and sizes. In
addition to SCM, Brad is well versed in agile development, and cofounded
the Chicago Agile Development and Chicago Patterns Groups. He holds
an M.S. in Software Engineering and a B.S. in Computer Science and
Mathematics. You can reach Brad by email at brad@bradapp.net

Steve Berczuk has been developing object-oriented software
applications since 1989, often as part of geographically distributed teams.
In addition to developing software he helps teams use Software
Configuration Management effectively in their development process.
Steve is co-author of the book Software Configuration Management
Patterns: Effective Teamwork, Practical Integration. He has an M.S. in
Operations Research from Stanford University and an S.B. in Electrical
Engineering from MIT. You can contact him at steve@berczuk.com. His
web site is www.berczuk.com

Steve Konieczka is President and Chief Operating Officer of SCM Labs,
a leading Software Configuration Management solutions provider. An IT
consultant for 14 years, Steve understands the challenges IT
organizations face in change management. He has helped shape
companies’ methodologies for creating and implementing effective SCM
solutions for local and national clients. Steve is a member of Young
Entrepreneurs Organization and serves on the board of the Association
for Configuration and Data Management (ACDM). He holds a Bachelor of
Science in Computer Information Systems from Colorado State
University. You can reach Steve at mailto:steve@scmlabs.com

