
http://www.cmcrossroads.com/ubbthreads/printthread.php?Board=cmjou...

1 of 9 1/19/2005 10:31 AM

CM Crossroads
the Configuration Management Community

 Release Management – Making it Lean and Agile by Robert Cowham

A collaboration for Agile SCM by Robert Cowham and Brad Appleton – August 2004 

This month we have a guest author, Robert Cowham, to write about this month’s theme of Release

Management, and how to make it more agile by borrowing principles, patterns, and practices of Lean

and Agile Development (in addition to some tried and true SCM practices of course). 

Release Management 

Release Management is an awesome responsibility that plays a vital role in the success of a software 

development project (see [1] and [2]). Releasing is often considered to be an activity that happens near 

the end of the process - a necessary evil perhaps, but no more. This article contains some thoughts on 

the impact that the various activities which form part of software development, delivery and 

maintenance have on releasing. 

What can make our releasing easier? Perhaps not surprisingly, quite a bit - the challenge is to influence 

the appropriate parts of the process. 

I hope to provoke some thought and give some pointers to more detailed explanations of individual 

ideas and references. 

What is a Release? 

My definition is getting a version of "the system" into the hands of the users, where the system may be 

one or more executables, 

web pages or web sites, associated documentation and help, related backend or third party systems, 

associated support systems, embedded systems, etc. 

The system needs to be something that works and that performs valuable functionality for those users. A 

release of the system "on the shelf" is about as much use as a chocolate teapot. 

For many internal systems, organisations would benefit tremendously from treating it as a product 

development for external use, which 

typically have higher standards applied to them. 

Common Release Problems 

From the view point of the business, releases frequently: 

take too long - a new release which misses the market opportunity may miss millions in potential 

revenue. 

are unpredictable - one of the best diagrams I saw about the advantages of CMM showed the 

predictability of project schedules 

coming down from an average variance of 30 weeks to a variance of less than 4 weeks over a 2 



http://www.cmcrossroads.com/ubbthreads/printthread.php?Board=cmjou...

2 of 9 1/19/2005 10:31 AM

year period as the organisation moved to level 2. One example I have come across is Symbian. 

They produce the operating system to go in millions of mobile handsets. Software release dates 

are planned in to schedules including factories making those handsets. The cost of unpredictable 

or missed schedules is potentially massive. 

have poor quality - systems with too many support calls and too many bugs. The impact on 

public trust caused by bad releases can have a very long-term effect. Look at Microsoft's efforts 

with "Trustworthy Computing" [3] and other related efforts to improve public perception of some 

of their products (though other factors are of course also present in this case).

are not useful - does the system actually support useful functionality needed by the business, or 

is it mainly technical bells and whistles? 

The business typically wants to manage risk sensibly andgain the maximum advantage from releases. 

There are many other problems with releases, such as: 

contents of the release not being planned - the contents are produced in a rather ad hoc manner 

with all code finished by a certain date integrated in some fashion and shoved out the door. 

contents unknown and uncontrolled - I have seen many systems where people did not know 

exactly what had gone in to particular releases. I know of one company producing a fairly widely 

sold tool where they had very loose "controls" on releases. They didn't know what had gone out 

the door to various customers, and which variants were in the field. Myriad versions lay around 

which might or might not have been released. Support and reliability were a nightmare. 

distribution/installation - frequently overlooked areas, or at least overlooked until too late. A 

system that can't be got easily into the hands of users and installed on their system is not terribly 

useful. Upgrade/downgrade are also vital considerations. 

Making Releases Easier 

So let's look at what we can do to make releasing easier. 

Planning 

As with most things, the better we plan, the better the end result is likely to be. So what activities do we 

need to plan? Well if we consider the typical lifecycle of software products, it contains activities such 

as: 

Identifying the Business case and gathering requirements (market/features) 

Architecture/Design 

Detailed Design, Code and Test 

Integration 



http://www.cmcrossroads.com/ubbthreads/printthread.php?Board=cmjou...

3 of 9 1/19/2005 10:31 AM

Deliver/Install 

Maintain/upgrade 

Perhaps not surprisingly, all of these activities can have an effect on how easy it is to release a product 

or system. 

Lean Software Development Principles 

This is a fascinating book by Mary & Tom Poppendieck which I heartily recommend [4]. I also attended 

a keynote talk by them a few 

months ago in which they talked about how to "Make More Money" [5] - an attention grabbing title! 

You do this by increasing the ratio of outputs to inputs, and a key recommendation was to do less work.

She mentioned Jim Johnson (also noted Martin Fowler's summary of the XP2002 conference [6]) on the 

large proportion of features that aren't used in a software product. He quoted two studies: a DuPont 

study quoted only 25% of a system's features were really needed. A Standish study found that 45% of 

features were never used and only 20% of features were used often or always. 65% of features in 

systems are rarely or never used. A system that has fewer features is likely to be easier to release! 

Mary referred to the term "Minimum Marketable Feature Sets" in the book "Software by Numbers; 

Low-Risk, High 

Return Development" by Mark Denne & Jane Cleland-Huang [7], as a way to conduct your 

requirements gathering (along with a proposal, theory and metrics for an incremental funding method - 

IFM). 

Some other concepts from Lean Software Development that are of interest, particularly from the 

principles of lean thinking [8] and 

rules of lean programming [9]: 

Streamline your process using value stream mapping - if you track a change request or similar 

through your development system and record the amount of time it is being worked on vs. the 

amount of time it is waiting for something to happen, you will typically find most time is spent 

waiting. For example, waiting for customer reviews can often take weeks to be scheduled. 

Processes like Agile methods look to minimise this "down time". 

Delay commitment on decisions 

Shorten the customer feedback loop and deliver fast 

Requirements change so you need to manage this.

See Appleton's presentation on "Agile Configuration Management Environments" [10] for some ideas 

on how some of these 

principles and rules can be applied to configuration and release management 

Architecture 



http://www.cmcrossroads.com/ubbthreads/printthread.php?Board=cmjou...

4 of 9 1/19/2005 10:31 AM

The architecture of a system is often already defined as part of the business case, but it can have a 

tremendous affect on the ease of release. Thus the tremendous growth in browser based applications 

where the only thing that needs to be upgraded is the server. This is in contrast to the greater usability 

that is still achievable with thicker client applications. 

Of course Microsoft recognised the major problems that organisations had with installing fat client 

applications and versioning 

conflicts inherent in "DLL Hell". Their approach has been to produce the .NET framework with its 

"xcopy deployment" architecture. 

One of the problems in deciding on the architecture for a windows based application at the moment is 

that developing with the .NET framework requires a 20Mb download for many end users. This 

requirement alone may negate all the development advantages that .NET brings in comparison to COM 

based solutions since it reduces the potential market. When are the majority of users going to have the 

.NET runtime installed, or is the broadband penetration going to be such as to make this less of an 

issue? (Of course it still won't go away since there will be several versions of the .NET framework out

there - you may need to develop for the lowest common denominator). 

There was an interesting piece recently in the June issue of Joel on Software [11] talking about 

extending HTML to make web 

applications work better, and Joel's piece on How Microsoft Lost the API War [12] suggesting that 

making DHTML work better in Internet Explorer was too dangerous to Microsoft's core business as it 

would make servers more of a commodity! Worth a consideration. 

For an internal product where you have more control of the desktop software and capabilities, such 

decisions can be much easier - choose the architecture that makes development easier. 

The concept of application services provision by companies such as Salesforce.com can also make life a 

lot easier for customers (at the 

risk of entrusting your data to a third party). As an ASP, producing new releases is vastly easier with 

full control of all the servers and the data. 

System Environment 

The environment in which a system functions is very important. This includes many items such as 

databases, third party systems, specialised hardware etc. Not only do you have to consider compatibility 

between releases of the system, but testing can be very difficult. Resources to fully duplicate live 

environments can sometimes be prohibitive, requiring more risky testing procedures. Anything that can 

be done to minimise the dependencies on such external items is going to make releasing easier. 

Databases are a common challenge for controlling using CM tools. You need to identify structure 

changes, upgraded/downgrade scripts, etc. Enough for a whole article on its own! 

Process/Patterns 

There are many applicable patterns for the process of development which can ease releasing of 

software. It has long been understood 

that software design principles such as modularity, cohesion, coupling, understandability and 

adaptability are all of benefit, and these carry through to the releasing of software. 



http://www.cmcrossroads.com/ubbthreads/printthread.php?Board=cmjou...

5 of 9 1/19/2005 10:31 AM

These days, the production of software as groups of components is very widespread since it builds on 

these principles, and makes the construction of larger systems from component parts more manageable. 

I liked the metaphor mentioned by Laura Wingerd of Perforce Software at the BCS CMSG 2003 

Conference [13]: it is easier to take a group of 40 adults on a trip than 5 children. The adults can be 

treated as components each of whom is responsible for their own luggage etc. For the children, you 

have to ensure they have packed appropriately down to the last toothbrush. 

SCM Patterns 

There are a number of SCM Patterns particularly applicable to releasing. From the book of the same 

name by Berczuk & Appleton [14], I 

would like to briefly mention: 

Task-Level Commit 

Integration Build 

Release Build [15]

Smoke Test/Regression Test 

Release-Prep Codeline

Mainline 

Codeline Policy 

For more details, please see the book and previous articles in CMCrossroads.com "Agile SCM" column 

(particularly [15],[16] and [17]) 

Producing Release Notes 

From my personal experience of managing releases, I have found one activity to be a key indicator for 

process health - the production of Release Notes. 

These are typically a list of changes: bugs fixed and features added. They are very useful to everyone to 

understand what is in the release, how it differs from previous releases, and whether a particular 

problem will be fixed by upgrading or not. 

I have certainly had the experience of producing release notes being a major chore. Having volunteered 

(or been volunteered) to do the job, I had to find out what had changed. The first approach was email all 

the developers asking for a list of changes. One deafening silence later, and I would go around and bug 

them in person until they gave me some sort of list. This I would use to compare with and revise the 

project manager's rather optimistic list of changes. Being a naturally suspicious person, I would 

typically grub around in the code looking at differences between the release version and the previous 

version and trying to match changes with the official list. This would frequently turn up extras, or 

omissions. All in all, a rather painful activity, especially as it was usually left until near the deadline 



http://www.cmcrossroads.com/ubbthreads/printthread.php?Board=cmjou...

6 of 9 1/19/2005 10:31 AM

when things were being madly rushed out the door. 

Life is much easier if task-based development [18] is followed. 

Firstly the release contents are planned - the list of open bugs and planned new features is tracked 

and they are assigned to developers. No code changes are made without associated tasks (this 

doesn't need to be enforced by a tool though it needs to be made easy to find out, since 

appropriate carrot and stick techniques work wonders).

Then you need some simple workflow to track code fixes and whether they have been coded, 

tested and verified. The linking of tasks to code changes (or change sets ideally) should be made 

as easy as possible.

Finally, it is helpful to have good tool support to track associations across release lines. See the 

discussion by Gareth Rees in "Can we ship yet?" [19]. 

Practice makes perfect... 

Not surprisingly, a key way to release better is to do it more frequently! Frequent releases highlight the 

problems, and force you to address them. Manual steps or painful processes that are possible once or 

twice a year, become unmanageable on a more frequent basis. This alone focuses the mind and leads to 

improvement. 

Agile Development lends itself to this with the following practices (see [20] and [21]): 

Small, Frequent releases (regular cycle) 

Release Plan 

Iteration Plan 

Continuous Integration 

Test-driven development 

Unit testing 

Acceptance testing 

Code should always work!

Don't forget to balance these practices against your current project by taking into consideration your 

organization's "culture" and project's context. Boehm and Turner's "Balancing Agility and Discipline" 

[22] and Larman's "Agile and Iterative Development: A Manager's Guide" [23] can prove helpful in 

doing this. 



http://www.cmcrossroads.com/ubbthreads/printthread.php?Board=cmjou...

7 of 9 1/19/2005 10:31 AM

Automation is a basic requirement for frequent releases. Automation of unit testing in agile methods 

leads to much greater confidence that the system works and that bugs have not been introduced. 

Automated builds catch integration problems early making them much easier to fix. Automation of the 

production of release notes as discussed above makes the project much more controlled and less subject 

to surprise. Automation of installs and upgrades are also key requirements for systems these days. 

A frequently underestimated part of Agile methodologies, is that of "information radiators" - a central 

whiteboard or similar for the team where current status and progress are shown in an easily visible 

manner. This makes it obvious what needs to be done, and who is currently doing what. 

See "The Pragmatic Programmer" by Hunt and Thomas [24] for more recommendations on 

automation (including their new book on Project Automation [25]). 

Also, the BCS has an event on the 12th October 2004 addressing Agile methods and CM (see 

http://www.bcs-cmsg.org.uk ). 

Case Study 

One company I have been involved with over the last 2-3 years produces a large treasury system used to 

trade billions on a daily basis. When I first started working with them, they had 15 clients spread over 3 

versions of their system (which had many, many configuration possibilities). The system had a VB front 

end and a 4GL backend. The interesting thing was that they had a single development workspace to 

work on all 15 releases of the system. This meant that a customer using an older release who wanted a 

single bug fix was forced to take the latest version of the system (with the bug fix). 

The latest version had seldom been tested against that customer's configuration parameters, and it 

usually took weeks for the new release to stabilise. 

Like most such processes, this had grown in a higgledy-piggledy fashion over the years in to the unholy 

mess it was then in. No big bang fixes were possible and it has been a slow and steady process of 

enhancements that have taken them to a much more controlled environment today. Migrating to a single 

SCM tool across all platforms was an early step. Separate build and test environments for testing 

brought major advantages. Branching to support older releases was also beneficial. It's still a work in 

progress! 

Conclusion 

Making a system easy to release is very much a holistic “thing” - you need to look at the whole lifecycle

of the development. Plan it, up front and throughout; adjust your processes and use appropriate patterns.

Practice releasing regularly, and even if iterative and agile methodologies are not possible in your

particular organisation, steal as many practices as appropriate and apply them. 

If you are assigned to look after releases in your organisation, start working back through the whole 

process looking for places that you can influence things to make your job easier. Bad decisions early in 

the process can make releasing a nightmare - don't accept them. Identify the problems, point out the 

ramifications, and work with the appropriate people to improve those areas. 

Happy Releasing! 



http://www.cmcrossroads.com/ubbthreads/printthread.php?Board=cmjou...

8 of 9 1/19/2005 10:31 AM

References 

[1] Software Release Methodology; by Michael E. Bays; Prentice-Hall PTR 1999 

[2] Release Management,The Super Discipline; by Mario E. Moreira; CM Crossroads Journal, 

November 2002 (Vol. 1, No. 11) 

[3] Trustworthy Computing; by Craig Mundie; Microsoft Whitepaper, October 2003 (see 

http://www.microsoft.com/mscorp/innovation/twc/twc_whitepaper.asp) 

[4] Lean Software Development: An Agile Toolkit; by Mary and Tom Poppendieck; Addison-Wesley 

2003 (see http://www.poppendieck.com) 

[5] "Software Development Productivity / Make More Money!"; presentation by Mary Poppendieck (see 

http://www.poppendieck.com/pdfs/Productivity.pdf) 

[6] The XP2002 Conference; summary write-up by Martin Fowler at 

<http://www.martinfowler.com/articles/xp2002.html#N100FC> 

[7] Software by Numbers – Low Risk, High Return Development; by Mark Denne and Jane 

Cleland-Huang; Prentice Hall PTR, 2004 (see http://softwarebynumbers.org) 

[8] Principles of Lean Thinking; by Mary Poppendieck; 2002 Conference on Object-Oriented 

Programming Systems, Languages, and Appplications (OOPSLA 2002); Seattle, WA, November 

2002; (see http://www.poppendieck.com/papers/LeanThinking.pdf) 

[9] Lean Programming; by Mary Poppendieck; Software Development Magazine, May-June 2001 (Vol. 

9, No. 5 and 6 -- see full article at http://www.poppendieck.com/lean.htm) 

[10] Agile Configuration Management Environments; by Brad Appleton;Chicago Software Process 

Improvement Network (CSPIN) presentation, March 2004 (see http://acme.bradapp.net/#AgileScm) 

[11] Joel on Software - June 2004 comments (see 

http://www.joelonsoftware.com/items/2004/06/17.html ) 

[12] How Microsoft Lost the API War; Joel Spolsky, from Joel on Software - June 2004 (see 

http://www.joelonsoftware.com/articles/APIWar.html) 

[13]Container-based SCM and Inter-File Branching by Laura Wingerd; BCS CMSG 2003 Conference

(see http://www.bcs-cmsg.org.uk/conference/2003/abstracts.shtml#Wingerd ) 

[14] Software Configuration Management Patterns: Effective Teamwork, Practical 

Integration; by Stephen P. Berczuk and Brad Appleton; Addison-Wesley, November 2002 

[15] Build Management for an Agile Team by Steve Konieczka, et.al.; CM Crossroads Journal, October 

2003 (Vol. 2, No. 10) 

[16] Codeline Merging and Locking: Continuous Updates and Two-Phased Commits, by Brad 



http://www.cmcrossroads.com/ubbthreads/printthread.php?Board=cmjou...

9 of 9 1/19/2005 10:31 AM

Appleton, Steve Konieczka and Steve Berczuk; CM Crossroads Journal, November 

2003 (Vol. 2, No. 11) 

[17] Agile Change Management: From First Principles to Best Practices; by Brad Appleton, Steve 

Berczuk and Steve Konieczka; CM Crossroads Journal, August 2003 (Vol. 2, No. 8) 

[18]SCM Patterns: Building on ‘Task-Level Commit’; by Austin Hastings; CM Crossroads Journal, 

June 2004 (Vol 3. No. 6) 

[19] Can We Ship Yet?; by Gareth Rees; 2001 Perforce User's Conference (see 

http://www.perforce.com/perforce/conf2001/rees/WPRees.html) 

[20] Extreme Programming Explained: Embrace Change; by Kent Beck; Addison-Wesley, 2000 

[21] Planning Extreme Programming; by Kent Beck and Martin Fowler; Addison-Wesley, 2001 

[22] Balancing Agility and Discipline: A Guide for the Perplexed; by Barry Boehm and Richard 

Turner; Addison-Wesley 2003 

[23] Agile and Iterative Development: A Manager's Guide; by Craig Larman; Addison-Wesley, 2003

[24] The Pragmatic Programmer: from journeyman to master; by Andrew Hunt and David Thomas; 

Addison-Wesley, 2000 (see http://www.pragmaticprogrammer.com/) 

[25] Pragmatic Project Automation; by Mike Clark; The Pragmatic Bookshelf, July 2004 (see 

http://www.pragmaticprogrammer.com/starter_kit/auto/) 

Robert Cowham is a Principal Consultant at Vaccaperna Systems Ltd in London, UK. He mainly 

provides SCM consultancy and training, but still keeps his hand in development wise! You can contact 

him via © 1998-2004 CM Crossroads the configuration management community - All Rights Reserved


